a, b ve c sayma sayıları, olduğuna göre a+b+c toplamının alabileceği üç basamaklı en küçük tam sayı değeri kaçtır?

a, b ve c sayma sayıları, 3a = 4b = 6c olduğuna göre a+b+c toplamının alabileceği üç basamaklı en küçük tam sayı değeri kaçtır?

A) 110
B) 109
C) 108
D) 107
E) 106

a, b ve c sayma sayıları, olduğuna göre a+b+c toplamının alabileceği üç basamaklı en küçük tam sayı değeri kaçtır?
Yayınlama: 18.10.2022
7
A+
A-

a, b ve c sayma sayıları, 3a = 4b = 6c olduğuna göre a+b+c toplamının alabileceği üç basamaklı en küçük tam sayı değeri kaçtır?

A) 110
B) 109
C) 108
D) 107
E) 106

3a = 4b = 6c ise
3k + 4k + 6k = 12k olsun.

(OBEB(3,4,6) = 12)

a = 4k
b = 3k
c = 2k ise;

a+b+c = 4k+3k+2k = 9k yani 9 yada 9’un katları olmalıdır.

Toplamın üç basamaklı en küçük değeri sorulduğundan k = 12 alınırsa eğer;
9 * 12 = 108 olur.

a, b ve c sayma sayıları, 3a = 4b = 6c olduğuna göre a+b+c toplamının alabileceği üç basamaklı en küçük tam sayı değeri 108 olacaktır. Doğru cevap c seçeneği 108 olacaktır.

Bir Yorum Yazın

Ziyaretçi Yorumları - 0 Yorum

Henüz yorum yapılmamış.